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Abstract: Bacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular
matrix, still represent an open challenge in many clinical contexts, including orthopedics, where
biofilm-associated bone and joint infections remain the main cause of implant failure. This study
explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, high-
lighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on
the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these
infections. The classic mechanisms through which biofilms form and the more recently proposed new
ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade
the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such
as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi.
New findings on biofilm formation with host components are presented. The article also delves
into the emerging and critical concept of immunometabolism, a key function of immune cells that
biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy
of biofilm infections is highlighted, referring to the latest research.

Keywords: biofilm; orthopedic implant infections; canaliculo-lacunar network reservoir; bacterial
dormancy; immunometabolism; internalization; metabolomics

1. Introduction

Our understanding of bacterial biofilm has improved since it was identified in the
last century. Research advances are providing new details about biofilm, illuminating its
different facets, and will help to better understand the nature of microbial biofilms.

From a broad perspective, biofilms predominate in all habitats on the Earth’s surface,
with 40–80% of prokaryotic cells on Earth residing in biofilms [1]. Most cells organized as
biofilms are found beneath continents and under the ocean floor (Flemming and Wuertz 2019).
It has been proposed that biofilms drive all biogeochemical processes and represent the major
form of active bacterial life [1].

In the clinical field, the hope—or rather, the expectation—is that advances will allow
us to improve diagnosis and therapy and, therefore, to fight biofilm infections more and
more effectively.

Importantly, biofilms are recalcitrant to medical treatments due to their ability to resist
or tolerate antibiotics and evade immune defenses, which hinders the treatment of infec-
tions [2]. In orthopedics, the management of implant-associated biofilm infections is one
of the most complex, requiring a multidisciplinary-team approach, including orthopedic
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surgeons, radiologists and medical imaging specialists, microbiologists, infectious disease
specialists, physicians, pathologists, plastic surgeons, physiatrists, and basic scientists [3].

Implant-associated infection affects approximately 5% of elective and emergency
orthopedic surgery procedures, representing a significant surgical complication, which
often leads to implant failure [4]. Additional subsequent surgeries are often required,
characterized by high morbidity rates and significant financial burdens. In some cases,
these interventions can culminate in the unfortunate outcomes of amputation or death [5,6].

According to the classic model of implant infection, once the bacteria have successfully
attached themselves to the implant, the insidious and threatening bacterial consortium
known as biofilm forms [7].

Biofilm-related implant infections represent a significant burden on healthcare systems,
comprising 65% of all bacterial infections in healthcare facilities [8].

Biofilm does not lend itself to a simple and limited description. Cells embedded in
biofilms exhibit altered metabolism and growth rate, as well as different gene expression,
compared to planktonic cells [9]. The diversity of microorganisms living in biofilms and
the complex nature of the biofilm matrix at the pathogen–host interface contribute to the
difficulties in studying biofilm. On the other hand, it is now known that the production of
biofilms exacerbates the infection, making it chronic. Thus, biofilm-associated infections
include chronic urinary tract infections (UTIs), recurrent tonsillitis, rhinosinusitis, otitis
media, periodontitis, cystic fibrosis, device-related infections (such as catheter-related
infections), wound infections, and orthopedic implant-related infections [10].

Although much research has been successfully conducted and considerable informa-
tion has been obtained about biofilms, some key questions remain unanswered. Given
the implications for future treatments of chronic biofilm-associated infections, gaining
further knowledge is critical. This is especially true for biofilm infections associated with
orthopedic implants, which often cause any treatment to fail. Overall, biofilms have been
studied in recent years, and there is continuous progress.

In this review, we comment on the latest developments and discoveries on biofilms,
also reflecting on the questions that are still open and still waiting to be answered. This
paper focuses on biofilms in orthopedic implants, examining the issues, needs, pathogenetic
knowledge, and innovations useful for diagnosis and therapy. Special attention is paid to
examining the implications and opportunities generated by the evolution of knowledge on
the mechanisms of bacterial persistence associated with biofilm formation, on the crosstalk
between host cells and biofilm, and on the relevant aspects that emerge from the study of
immunometabolism.

2. From Ancient Times until Today: A Brief Historical Excursus on Biofilm

To date, research and the understanding of bacterial biofilm has made significant
progress, and the field continues to evolve in several key areas. The first microscopic
observation of biofilm was by Anthony van Leeuwenhoek in the 17th century [11]. He
was the first to observe, with a microscope he designed himself, the “animalcules” on the
surface of his teeth, realizing that, even after cleaning, they remained “as thick as if it were
batter” [11].

Biofilms were not recognized and defined until 1978. In 1978, biofilm research pioneer
John William (Bill) Costerton launched an entirely new microbiological theory called biofilm
theory. The basis of the new theory was the concept that bacteria form consortia to face
adversity and hostile environments by coming together and encapsulating themselves in a
protective matrix [12,13]. Bill Costerton was a pioneer in the study of biofilm in the areas of
physiology, biochemistry, biomaterials, and so on [10,13].

At the same time, Niels Høiby, a medical microbiologist at the University of Copen-
hagen, began research on cystic fibrosis [14]. He observed bacterial aggregates through
the microscopic examination of sputum from patients with chronic lung infection by Pseu-
domonas aeruginosa [14].
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In May 2019, four decades after Costerton’s official discovery of biofilm and seven
years after his death [12,13], a meeting was held in Leavenworth, USA, aimed at identifying
gaps in the knowledge of biofilm and ways to bridge them [15]. The basic idea was to
holistically study biofilms in a variety of clinical and non-clinical fields, such as osteomyeli-
tis, medical device infections, native valve endocarditis, cystic fibrosis, and dental plaque,
among clinical fields, but also metal corrosion, oil degradation, and others, among the non-
clinical ones [15]. Two of the prominent clinical findings that emerged from that meeting
are indicated hereafter: the need to search for new non-antibiotic or antibiotic adjuvant
prevention and treatment strategies, since surgical curettages and conventional antibiotics
fail to treat biofilms; and the lack of comprehensive imaging methods to detect biofilms,
which makes it difficult to evaluate the effectiveness of new antibiofilm treatments.

As far as this latter point is concerned, there is no doubt that the future of biofilm
research will be critically founded on the development and application of new (imaging)
technologies for clinical diagnostics.

Current clinical biofilm research is also exploring in depth the role of biofilms in various
chronic diseases. These pathogenetic studies are aimed at better understanding the complex
microbial interactions within biofilms and between biofilms and microenvironments.

3. How Staphylococci Escape Host Defenses and Antibiotics in Peri-Implant Infections

Staphylococci are the main cause of implant-associated infections in orthopedics [16,17].
Thus, a detailed knowledge of the key pathogenetic mechanisms leading to their success is of
fundamental importance.

Biofilm formation, dormancy within biofilm, internalization into osteoblasts, and pen-
etration into cortical bone canaliculi are strategies used by staphylococci to survive at the
implant–periprosthetic bone interface, eluding host immunity and resisting antibiotics [2,10].

According to the classical model, biofilm formation on an orthopedic implant is a four-
step process [10] (see Figure 1). In the initial step, bacteria are passively adsorbed, as they
are driven by hydrophobic, electrostatic, and Van der Waals forces. In addition, the major
autolysin of Staphylococcus aureus (AtlA) and of Staphylococcus epidermidis (AtlE) mediate
the binding to the abiotic surfaces [10,18–20]. Autolysins also mediate staphylococcal
internalization [21,22].

Specific adhesins bridge to the host matrix proteins that cover the implant surface.
In S. aureus, adhesins comprise the cell wall-anchored Microbial Surface Components
Recognizing Adhesive Matrix Molecules (MSCRAMMs [23]) and the Secretable Expanded
Repertoire Adhesive Molecules (SERAMs) [24]. In S. aureus from orthopedic implant-
infections, the bbp (for “bone sialoprotein-binding protein”) and cna (for collagen adhesin)
couple of genes appeared to be an important virulence trait [25,26], which could favor or
determine their success as implant colonizers.

The extracellular polymeric substance (EPS) of the biofilm is mainly composed of
polysaccharides, proteins, teichoic acids, and extracellular DNA. [10,27]. The principal
polysaccharide is the Polysaccharide Intercellular Adhesin (PIA), a linear homoglycan
composed of β-1,6-linked N-acetylglucosamine residues. PIA synthesis is encoded by
the intercellular adhesion (icaADBC) locus [18]. This locus was first recognized in S.
epidermidis [28], then in S. aureus [29,30]. In the bacterial genome of S. epidermidis, no single
ica genes were found to be missing, as either all genes were present or the entire locus was
absent [31].

Importantly, PIA-producing strains exhibit high resistance and polyresistance to an-
tibiotics, mainly to aminoglycosides, sulfamethoxazole, and ciprofloxacin [32].
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Figure 1. The classical model of the biofilm cycle: the four-step process of biofilm formation in S. au-
reus. Planktonic cells adhere to the biomaterial surface through AtlA adhesin. Then, MSCRAMMs and
SERAMs bacterial adhesins interact with the extracellular matrix (ECM) proteins coating the implant.
Bacteria proliferate and produce an extracellular polymeric substance consisting of proteins (among
which is the biofilm-associated protein Bap), the intercellular polysaccharide adhesin (PIA), and a
series of other polymeric extracellular substances, among which is extracellular DNA (eDNA). Once
a mature biofilm has formed, under the control of the quorum sensing system, the enzymes β-phenol-
soluble modulins, proteases, and murein hydrolases dissolve biofilm and release planktonic bacteria
to initiate a new biofilm cycle. The more recently emerged role of the microenvironment and host
molecules in biofilm formation is also recalled. Abbreviations: AtlA, the major autolysin of S. aureus;
EPS, extracellular polymeric substance; MSCRAMMs, Microbial Surface Components Recognizing
Adhesive Matrix Molecules; SERAMs, Secretable Expanded Repertoire Adhesive Molecules.

The mobile element, IS256, previously related to the phase variation of biofilm forma-
tion in S. epidermidis [33] and then to multi-antibiotic resistance [34], has more recently been
associated with bacterial genome plasticity in adapting to antibiotic stress [35,36]. In a very
recent study, Kirsch et al. showed that stressors, such as antibiotic exposure, drive genome
transposition in enterococci, suggesting that the diversification of IS256 can explain how
selective pressure mediates the evolution of the enterococcal genome and the emergence of
dominant nosocomial lineages [37].

The role of polysaccharide intercellular adhesin in biofilm along with its structural and
regulatory aspects are reviewed in [38]. Biofilm production can also follow ica-independent
pathways [39]. These rely on the expression of cell wall adhesins that maintain a cell-
to-cell interaction inside the biofilm. The first recognized was the biofilm-associated
protein Bap [40]. In clinical isolates of S. aureus and S. epidermidis from total hip and knee



Antibiotics 2024, 13, 184 5 of 23

infected arthroplasties, over a quarter of S. epidermidis biofilm-producing strains were
PIA-independent and expressed the accumulation-associated protein Aap [41]. In S. aureus,
SasC and SasG (homologues of the S. epidermidis Aap), the clumping factor B (ClfB), the
serine-aspartate repeat protein SdrC, the protein A, the fibronectin/fibrinogen-binding
proteins FnBPA and FnBPB, also promote the accumulation of biofilm [23,41,42].

Another EPS component is extracellular DNA (eDNA). eDNA production proceeds as
follows. In S. aureus, some cells kill themselves through programmed cell death [43] for the
benefit of the microbial community. Differently, in E. faecalis, killer cells suppress victim
cells [44]. In both cases, eDNA comes from dead cells. In S. epidermidis, eDNA release is
mediated by AtlE [45]. eDNA strengthens the biofilm, acts as a gene pool for horizontal gene
transfer, serves as a source of nutrients, and prevents phagocytosis [43,46,47]. Moreover,
eDNA contributes to the complex architecture of the bacterial biofilm matrix through a
variety of interactions with other molecular components of the biofilm matrix [27,46].

Staphylococci escape host defenses and antibiotics not only by wrapping in biofilms,
but also by hiding in eukaryotic cells, impermeable to conventional extracellular antibiotics.
In this regard, FnBPA and FnBPB S. aureus adhesins are essential for bacterial invasion in
eukaryotic cells [48], although FnBPA plays a more crucial role than FnBPB [49].

The internalization of S. aureus into osteoblasts has been ascribed to the mechanisms
depicted in Figure 2. S. aureus and S. pseudintermedius turned out to be competent, while
S. epidermidis, S. lugdunensis, and E. faecalis turned out to be incompetent, to enter os-
teoblasts [50,51].

Interestingly, studies have shown that bacteria can penetrate the bone canaliculi, thus
continuing their proliferation while remaining out of sight and out of reach of the host’s
immune cells [52,53]. Those who study biofilms know how much bacteria love niches. Yet
the observation that bacteria colonize canaliculi is relatively recent. Morphological insights
into canaliculi are also recent. The porous network that houses the osteocyte system is
called the bone lacuno-canalicular network. Here, osteocytes transfer nutrients, biochemical
signals, and hormonal stimuli that allow for their interaction with other bone cells. The
canaliculi are the branches of this system. A 2020 study is dedicated to the assessment of the
human bone lacuno-canalicular network at a nanoscale, and another just-published 2023
study concerns the imaging of bone disease through the near-infrared-II window [54,55].
Canaliculi have an average diameter of approximately 100–600 nm (0.1–0.6 µm); therefore,
they have a diameter smaller than that of S. aureus (1 µm) and approximately corresponding
to that of S. epidermidis (0.5 µm), the two main etiological agents of orthopedic implant
infections. This means that bacteria cannot enter the canaliculi easily. However, some
pathological conditions, such as osteoporosis, can widen the diameter of bone canaliculi.

We would like to draw attention to the fact that one of the problems that make the
complete eradication of the biofilm difficult is the presence of metabolically dormant “per-
sister” cells, against which common antibiotics or metabolic antibacterials may not be
effective [56]. The first observation of persistent bacterial cells is attributable to Joseph
Bigger who, way back in 1944, observed that among staphylococci exposed to intermittent
sterilization with penicillin some bacterial cells survived [57]. In implant-related infections,
following treatment with antibiotics, a small part of the bacterial population becomes
dormant. Persistent cells do not grow but survive, and can reactivate, multiply, and recon-
stitute a biofilm when antibiotic therapy ceases [58]. Sub-lethal concentrations of antibiotics
and stresses favor the phenomenon of bacterial dormancy [59,60]. Killing dormant cells
cannot be achieved with traditional antibiotics, which require active metabolism by the
affected bacterial cells. Researchers’ attention is turning to antimicrobial peptides (AMPs),
whose bactericidal effect lies in the ability to damage the bacterial membrane. Some AMPs
have already been approved for clinical use, while others are currently facing advanced
clinical trial phases. Therefore, new AMPs are compounds to be searched for and tested as
antibacterial/antibiofilm candidates [61].
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Figure 2. S. aureus internalization into osteoblasts. Two entry mechanisms are depicted. One is
mediated by fibronectin, which forms a bridge between staphylococcal FnBP adhesin and osteoblast
α1β5 integrin. This interaction promotes expression of Tumor Necrosis Factor-Related Apoptosis
Inducing Ligand (TRAIL), which induces caspase 8 activation and the consequent osteoblast apoptosis.
The other way is mediated by the interaction of Staphylococcal protein A (SpA) and Tumor Necrosis
Factor Receptor 1 (TNFR-1) on the osteoblast surface. This interaction promotes the expression of the
Receptor Activator of NF Kappa B Ligand (RANKL), a key cytokine in promoting osteoclastogenesis.
Bone destruction results from the apoptotic death of osteoblasts and from the activation of osteoclasts.
Other, cytokines released by internalized osteoblasts recruit monocytes/macrophages and induce
their differentiation into osteoclasts, thus corroborating osteoclastogenesis. Also depicted are bacteria
nestled in the bone canaliculi and dormant bacteria within biofilm.

Contact between AMPs and the bacterial membrane should also be encouraged, as
it can be hindered by the biofilm matrix. New compounds that are capable not only of
killing bacteria but also of reaching them deep in the biofilm is a desirable solution. A
recent article by authors from Nanjing, China, reports of a conjugate between AMP and a
furoxan moiety, which seems to produce S. aureus and Escherichia coli biofilm eradication
and dispersion [62]. This methodology could be conveniently adapted and applied to
prefigure new compounds containing different antibiofilm/dispersing agents. However,
these approaches still require long periods of time to be translated to a clinical use.
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4. Alternative Models of Biofilm Formation

The classic model here recalled explains biofilm formation and its propagation in a
simple way. However, the latest studies question this classic model, underlining some
critical aspects: (i) the classical model refers to in vitro conditions, and it does not consider
the importance and variety of the in vivo microenvironment [63]; (ii) in the presence of an
implant, biofilms can form either by adhering to the surface of the implant or by interacting
with the periprosthetic tissues, not necessarily using both ways in every infection [64]; and
(iii) the classical model does not consider the non-attached biofilms [65].

We discuss these three points concisely below.
Very recent articles have focused on the importance of understanding the infectious

microenvironment (see also the next paragraph). This, in fact, could appreciably influence
bacterial behaviors and the susceptibility of the biofilm to treatments. The infectious mi-
croenvironment could cause sensitive bacteria to lose their susceptibility to antibiotics that
are effective in standard laboratory susceptibility testing. In this regard, it is a common clin-
ical observation that standard doses of antibiotics do not efficiently treat chronic infections
of the soft tissue and bone. The behaviors that bacteria exhibit under standard laboratory
conditions can be substantially different from those they adopt when infecting living tissues.
The infectious microenvironment could lead to changes in bacterial metabolism that result
in increased protection against antibiotics. Therefore, it can be expected that antibiotic
treatment will be more effective when antibiotics are chosen based on in vitro susceptibility
tests in which the real infectious microenvironment is recreated. In this connection, proteins’
adsorptions on titanium and bone samples were found to be crucial factors that influence S.
aureus biofilm formation, the difference in materials reverberating not only on adhesion,
but also on the matrix composition and biofilm-related gene regulation. These results
highlight the need for new models for the study of biofilms that are representative of in
situ conditions. This will allow us to better evaluate and prefigure therapeutic strategies
against biofilms.

The second point of attention is the following. It is stated that bacteria adhere to the
surface of the biomaterial, as can be deduced from the classic biofilm model. However,
recent studies suggest that, although bacteria in periprosthetic infections can adhere to the
surface of the biomaterial, they can also be located only in the periprosthetic tissues, and
not necessarily on the implant. Noticeably, detached aggregates exhibit the same antibiotic
tolerance observed in surface-adherent biofilms [64].

If the possibility that bacteria colonize the periprosthetic tissues—without necessarily
adhering to the implant material—is established, research on anti-adhesive or contact-
killing coatings [66,67] (biomaterial technologies both inspired by the classical model in
which adhesion to the surface of the biomaterial is the primum movens of infection) should
be revisited, emphasizing the design of biomaterials that release drugs to reach the bacteria
nested in the tissues [68].

We add that there is an urgent need for research into new molecules that are alter-
natives to antibiotics, effective, and non-toxic, which do not induce drug resistance, and
which are also effective on intracellular bacteria, on dormant bacteria, and on bacteria
hidden in the depths of the bone canaliculi: this is a great challenge.

The third critical point concerns the so-called non-attached biofilm aggregates, which
consist of bacteria submerged into an extracellular matrix. A very recent review presents
and discusses the characteristics of non-attached biofilm aggregates [65]. In the article, the
following aspects are examined: the mechanisms by which they form and disperse; the
in vitro models for their analysis; several examples of their occurrence; their tolerance to
antibiotics and the evasion of immune responses; and a comparison between non-attached
biofilm aggregates and surface-attached biofilms.

Bjarnsholt et al. defined in a meta-analysis the distribution of biofilm aggregates in
chronic infections. They reported the presence of non-attached aggregates in cystic fibrosis,
chronic wounds, otitis media, and chronic osteomyelitis [65,69]. Interestingly, many of
these non-attached biofilms are small bacterial aggregates surrounded by polymers-rich
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host secretions and large numbers of inflammatory cells [65,70]. Domnin et al. proposed
an in vitro model of non-attached biofilm-like bacterial aggregates, based on magnetic
levitation, to study non-attached aggregates with confocal laser scanning microscopy
(CLSM) and scanning electron microscopy (SEM), and to characterize them quantitatively.
Using this model, they demonstrated that, despite morphological and functional similar-
ities between non-attached aggregates and biofilms, biofilm-forming strains can exhibit
poor non-attached aggregate formation, suggesting that the mechanisms underlying the
formation of adhered biofilms differ from those leading to non-attached aggregates [65].

5. Can the Biofilm Formation Be Induced by Host-Derived Factors?

When a biofilm forms, bacteria change from their planktonic state to an aggregated
state that is peculiarized by a blanket of extracellular polymeric substances (EPSs), the so-
called biofilm matrix. When exposed to a variety of micronutrients, bacterial cells produce
enzymes that change and modulate the composition of EPSs [71,72].

Further studies are needed to fully define the complex interactions between hosts and
bacterial biofilms. When possible—which occurs when the bacteria are in the planktonic
phase or are in the very initial phase of the formation of their biofilm—the host expresses a
highly effective defense against bacterial invaders. Bacteria, for their part, use programmed
feedback and skillful strategies of defense, evasion, and even the hijacking of host defenses
to pursue their advantage and safeguard their survival. Sometimes, host immune responses
are insufficient or ineffective, which allows bacteria to create robust biofilms with thick
matrices to shield themselves from host defenses.

It is hypothesized that bacterial biofilm production may include in the matrix either a
layer of molecular components released by host cells or an incorporation of them within
the matrix. These host molecules would enrich the components produced by the bacteria
themselves. For example, host-specific eDNA may play a key role in the formation of
bacterial biofilms in the lungs of cystic fibrosis patients [8,73]. The interaction between
eDNA and Psl (a P. aeruginosa exopolysaccharide) serves to enrich the biofilm scaffold and
favors the survival of P. aeruginosa during lung colonization.

Gallo et al. demonstrated that salmon spermatozoa-derived eukaryotic DNA molecules
could be absorbed into bacterial amyloid fibers [74].

Among the components incorporated into the biofilm are, in addition to DNA, albu-
min, collagen, and mucin [75].

In addition, Walker et al. found that human neutrophil cells are mediators of P.
aeruginosa’s increased biofilm production [76]. This correlates with the finding that, when
the host immunity is unable to eliminate bacterial infections, host-derived components from
necrotic immune and non-immune cells (cellular debris, biological molecules, inorganic
nanomaterials) could serve as a welcome resource that encourages bacteria to enrich the
matrices of their biofilms, by weaving them, or reweaving them, more sumptuously.

Rhamnolipids are a class of glycolipid produced by P. aeruginosa. They express cytolytic
activity toward host cells. Neutrophils in the proximity of the biofilm produce host-derived
debris, including DNA and actin polymers, which P. aeruginosa exploits as an additional
source of material for assembling and shaping the biofilm matrix [77]. Host debris has been
identified in the sputum of cystic fibrosis patients. The disruption of these polymers breaks
the P. aeruginosa biofilm and reduces the pace of biofilm development [77].

Another previously mentioned important aspect to recall is that most of the knowledge
on biofilms still derives from in vitro studies. Indeed, while a great deal of information
on the molecular factors involved in the in vitro generation of bacterial biofilm has been
gathered, the definitions of biofilm formation processes within the host is considerably
less clear. However, as already mentioned, host components are hypothesized to play a
significant role in the formation of bacterial biofilms in vivo; consequently, in the clinic,
these host components must be taken into consideration when evaluating the efficacy of
new therapies to target bacterial biofilms.
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Rahman et al. evaluated the viscoelasticity of in vivo P. aeruginosa biofilms through
ex vivo micro-rheology measurements of in vivo biofilms excised from mouse wound
beds. The in vivo results were compared to typical in vitro measurements. Biofilms grown
in vivo are more elastic than those grown in vitro. It was observed that the contribution of
exopolysaccharides to the viscoelasticity of P. aeruginosa biofilms was different between
biofilms grown in vitro and biofilms grown in vivo. In vitro experiments with collagen-
containing media suggested this phenomenon may be attributable to the incorporation
of host material, most notably collagen, into the matrix of the in vivo-grown biofilms.
Collagen appeared to be the dominant contributor to biofilm viscoelasticity in vivo [78].

Garcia-Bonillo et al. studied the role of human albumin in the formation of bacterial
biofilms on urinary catheters by simulating environmental and physical conditions using a
quartz crystal microbalance with dissipation. They demonstrated that human albumin can
be considered a promoter of biofilm formation on hydrophobic surfaces, being a possible
risk factor to developing catheter-associated urinary tract infections [79].

Wu et al. found that mucin shapes microbial communities in several ways: serving
as a nutrient to support metabolic diversity, organizing spatial structure through reduced
aggregation, and limiting antagonism between competing taxa. Overall, the work of Wu
et al. identified mucin glycans as a natural host mechanism [80].

Skovdal et al. demonstrated that host plasma components cause changes in biofilm
formation and composition in S. epidermidis [81]. They pointed out that some of the biofilm
matrix components previously thought to be important for biofilm formation, such as PIA,
do not appear as critical in the presence of host factors. They reasoned that the role of PIA
in biofilms might be predominant in in vitro cultured biofilms, which form in sugar-rich
laboratory media. Conclusively, they suggested that in vitro models used to study biofilm
infections must include host factors in the growth media.

Consistently, the study by Christner et al. demonstrated that PIA production is
downregulated in human serum [82]. In S. epidermidis, the formation of a proteinaceous
biofilm relies on the extracellular matrix binding protein Embp, a giant protein endowed in
the cell wall of S. epidermidis that mediates the binding of S. epidermidis to (surface-attached)
fibronectin [83]. In contrast to PIA, Embp is present in almost all clinical isolates, and it is
upregulated when S. epidermidis grows in human serum, this suggesting an essential role
of Embp.

The microenvironment can also have a strong impact on antibiotic resistance.
An interesting study by Xin et al. explores a world—that of the sewers—apparently

far from the clinic but important in a holistic vision of medicine such as that represented by
the modern concept of One Health. The mentioned study highlighted that trace antibiotics
favor the transfer of antibiotic resistance genes by regulating the extracellular polymeric
substances of biofilm in sewers [84].

Townsley et al. reported that (natural-product) antibiotics at subinhibitory concentra-
tions can impact biofilm formation in neighboring bacteria and hypothesized that these
compounds mediate the biofilm formation and the cell–cell interactions [85].

Bernardi et al. showed that subinhibitory concentrations of the antibiotics tetracycline
and doxycycline promote biofilm formation by Enterococcus faecalis [86]. We would like
to take this opportunity to recall that E. faecalis is the fourth bacterial species in order of
frequency to colonize periprosthetic tissues and that it is a formidable biofilm former.

In a recently published article by Yuan et al., multi-omics detected increased biofilm
formation via Salmonella typhimurium M3 induced by sub-inhibitory concentrations of
tetracycline [87].

By targeting host components involved in the formation of bacterial biofilms and
deepening the research on the effects of administering antibiotics (at doses below the
minimum effective dose), future studies to characterize new treatments against biofilm-
associated bacterial infections may be considerably more relevant and precise.
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6. Bacteria Detection in Biofilms

In recent years, one of the most challenging problems with biofilm has been the diag-
nosis of biofilm infections. Mature biofilms tend to resist or tolerate antibiotics and disperse
planktonic bacteria into the physiological environment, propagating the infection [88]. In
this way, biofilm infections usually reach the chronic phase. Antibiotic treatments some-
times contain but do not eradicate bacteria. Overall, currently, the diagnosis of biofilm
infection is based on two principles: clinical evidence and microbiological data [89].

Clinically, biofilm infection might be suspected if a patient presents with any of the
following clinical manifestations: (1) patients with or without prosthetic heart valves or
pacemakers presenting with intermittent fever and bacteremia with an identical pathogen
and without an obvious focus, but higher C-reaction proteins (CRP) and/or erythrocyte
sedimentation rates (ESR) with or without leukocytosis (for endocarditis); (2) cystic fibrosis
patients with mucoid P. aeruginosa in sputum (for P. aeruginosa biofilm in cystic fibrosis);
(3) patients with a central venous catheter or hemodialysis catheter who have recurrent
bacteremia with an identical pathogen (for intravenous catheter (IVC) biofilm); (4) patients
with urinary catheters who have recurrent urinary tract infections with the same pathogen
(due to urinary catheter biofilm); (5) patients with a joint prosthesis who have chronic
pain locally and signs of the loosening of the prosthesis (due to orthopedic infection);
and (6) patients with chronic wounds and recurrent wound infections (due to wound
biofilm) [89–91].

Common microbiological tests include sample collection, microbial culture, and the
characterization of antibiotic susceptibility [89]. For example, in individuals with device-
associated infections, up to four–five tissue biopsies from various sites close to the device
are critical [89]. However, usual microbiological tests are meaningful and useful for the
diagnosis of many bacterial infections but are less sensitive in detecting biofilm infections.
Therefore, new methods should be introduced to efficiently complement the usual microbi-
ology. It has been demonstrated that the adequate sonication of removed prosthesis could
significantly improve the detection rate of bacterial cells [90].

In usual microbiological tests, negative samples from patients with clinical suspicions of
biofilm infections are detected. 16S rRNA polymerase chain reaction (PCR)/sequencing [91] as
well as the complex and costly shotgun metagenomic sequencing (sNGS) can play a role in the
diagnostic evaluation of patients with culture-negative infections [92]. Another technique has
also proven useful for recognizing chronic biofilm-associated infection, namely fluorescence
nucleic acid in situ hybridization (FISH) [93].

Focusing on orthopedic implant infections, although large international workgroups
have recently elaborated consensus criteria to recognize and define them [7], the identifica-
tion of infections caused by biofilm-forming bacteria or by bacteria able to enter osteoblasts
or bone canaliculi remains a thorny problem. And indeed, these infections are extremely
insidious, as they are not only able to persist, but also to remain clinically silent or pau-
cisymptomatic for a long time, developing over a period of months to years. Moreover,
they tend to slip through classical culture methods. More than 150 years ago, Robert Koch
stated the four postulates that gave the theoretical and practical bases on which a causal
relationship between a microbe and a disease should be established [94]. Koch’s principles
are still used successfully in medical microbiology for diagnosing acute infective diseases
caused by planktonic bacteria. But bacteria within biofilms, plunged as they are in a matrix
material, the EPS of the biofilm, and most likely adherent to the implant, are prevented
from exposing themselves to the culture medium, and this likewise occurs for bacteria
shut up in a eukaryotic cell (osteoblast) or nested in the canaliculi. False-negative cultures
often lead to the abused diagnostic conclusion of “aseptic failure” even in the presence of
manifest clinical signs of infection.

Sonication, molecular analyses, and advanced imaging techniques have been in turn
introduced to improve microbiological diagnosis when conventional cultures fail to point
out bacterial contamination despite a well-founded clinical suspicion of infection. And
indeed, the sonication of the liquid medium containing the explanted orthopedic prosthesis
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can help to detach adherent biofilms and disaggregate them, thus releasing biofilm-free
bacteria. Detached bacteria can be cultured [90,95,96]. As far as molecular techniques, the
already mentioned PCR and FISH seem to improve the detection of bacterial involvement
in many cases of persistent infections [97]. Moreover, the multiplex PCR of sonication fluid
has been proposed to differentiate between prosthetic joint infection and aseptic failure
more accurately [98], while broad-range PCR has been used on biofilms dislodged from
knee and hip arthroplasty surfaces using sonication [99].

More recently, two sophisticated techniques for molecular analysis, MALDI–TOF MS
and PCR-electrospray ionization (ESI)/MS, have been successfully applied to microbio-
logical diagnosis. MALDI–TOF MS (matrix-assisted laser desorption ionization coupled
with time-of-flight analysis mass spectrometry) is based on a soft laser ionization of bacte-
ria, or even of the pathological sample, to detect peptide and protein ions of the bacteria
cell surfaces through the spectra deriving from their relative masses and charges [100].
The PCR-electrospray ionization (ESI)/MS (Ibis) technique is interestingly founded on
nucleotide base ratios (not base sequences) [101].

A wider clinical application of next generation sequencing (NGS) could allow the use
of this molecular technique in the diagnosis of bone and joint biofilm infections [102].

Focusing on imaging techniques, confocal laser scanning microscopy (CLSM), scan-
ning electron microscopy (SEM), and transmission electron microscopy (TEM) can be
used advantageously for the morphological study of tissue biopsies and to recognize and
characterize bacteria (either embedded within biofilm or intracellularly located) [103,104].
Imaging can help in diagnosing biofilm-associated infections and in addressing the follow-
ing issues: whether bacteria causative of implant infections enter osteoblasts and whether
intracellularly active antibiotics are useful for treating infection.

About the important issue of having a valid biofilm-staining technology that would
support surgeons during surgery, there are a series of questions that need to be answered
before prefiguring the use of a suitable technique. The limit of detection represents one of
the greatest obstacles. And now, excluding the use of radioactive tracers, bioluminescence
and fluorescence remain two of the most sensitive techniques in use to reveal in vitro the
presence of bacteria and bacterial biofilms. The use of suitable bioluminescent imaging
probes has been recently applied for the first time to non-invasive bioluminescence imaging
in humans [105]. Appropriate adaptations could probably offer new solutions to achieve
a valid biofilm-staining technology. However, much needs to be thought about for the
realization of such an approach in biofilm detection, and the clinical application is still far
to come.

The “beacon-based fluorescent in situ hybridization” is another interesting method [106],
but is perhaps even more difficult to adapt to the use we would like to make of it.

A newly developed biofilm-detection method is based on wound blotting on a (nitro-
cellulose) membrane, then stained with ruthenium red or alcian blue [107].

An adaptation of this method to the orthopedic implant infection scenery could guide
the surgeon to eliminate the bioburden more precisely. The membrane could be made more
adhesive and “attractive” to bacteria with appropriate molecular “baits”. Moreover, this
“blotting method” could be improved by using a “reticular grid” to better locate the points
in the infected joint to be debrided or cleaned intensively.

Nanotechnologies offer rapidly advancing solutions for the sensitive diagnosis of
orthopedic infections [108]. In consideration of the antimicrobial properties exhibited by
nanomaterials even on resistant and tolerant bacterial strains that form biofilms [109], of
particular interest is the possibility of unifying the ability to diagnose and treat bacterial
infections in a single formulation [110,111]. The concept of “nanoteranostics” refers to
the strategy of combining, through molecular engineering, imaging probes with thera-
peutic compounds into a single nanoparticle capable of providing targeted delivery. The
great potential but also challenges expressed by nanotheranostics in the detection and
treatment of multidrug-resistant and biofilm-forming S. aureus were recently discussed by
Mosselhy et al. [112].
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7. Immunometabolism

There is a close relationship between the immune system and the host’s metabolic
system. The pathogen plays an important role in this relationship. Recent studies have
highlighted the continuous crosstalk between bacteria and immune cells. The metabolic
interaction between pathogenic (biofilm) bacteria and host immune cells represents the
immunometabolism of (biofilm) infection.

The relationship between the host metabolic system and the bacterial counterpart,
with its metabolic processes and virulence mechanisms, evolves through infection [113].
Bacterial infection emphasizes the tight association between the host metabolic system
and bacteria.

In terms of bacterial infections, immunometabolic evaluations have focused on the
planktonic mode of growth [114]. Given the differences in the inflammatory behavior of
immune cells against planktonic versus biofilm-associated infections, studies should also
specify the metabolic properties of immune cells in biofilm infections [114].

The host immune reaction against biofilm infection is mostly ineffective, which results
in chronic infections [88].

The anti-inflammatory milieu that develops in implant-associated staphylococcal
biofilm infections exhibits an abundant infiltration of myeloid-derived suppressor (MDSC)
cells and a high production of the anti-inflammatory cytokine IL-10 [115]. In this connection,
it was recently discovered that S. aureus can upregulate the expression of genes correlated
with a lowering of immune cell defensive functions [116].

A key molecule (which we will also recall later in the paragraph on metabolomics)
that mediates the process of dampening the immune defenses is the metabolite itaconate, a
metabolite produced by the tricarboxylic acid (TCA) cycle in immune cells. Bacteria, once
internalized in the immune cells, would switch off the oxidative burst by stimulating neu-
trophils to produce itaconate [117]. The reprogramming of leukocyte immunometabolism
by bacteria seems to be an important and insidious mechanism of the chronicization of
biofilm infection.

Metabolic adaptability is an important characteristic of S. aureus, as it allows the
bacterium to survive even in adverse environmental conditions. Tomlinson et al. have
demonstrated that S. aureus adapts to itaconate by producing biofilm. Itaconate inhibits
glycolysis in S. aureus. Itaconate-adapted S. aureus strains, as those isolated from chronic
infections turned out to be, showed low glycolytic activity, high EPS production, and
formed biofilms even before itaconate stimulation [118].

Most of the time, the immune response of the host to a biofilm leads to long-term
infections. Numerous routes have been demonstrated to be involved in this phenomenon,
including direct interactions with neutrophils, macrophages, and MDSCs [119,120].

The characterization of whether and how biofilm avoids host immune-mediated
killing could support advanced therapeutic approaches to enhance the immune responses
and facilitate the clearance of biofilm infections.

However, great attention should be paid when manipulating metabolic reactions in
immune cells to develop new therapeutic strategies against biofilm infections.

Indeed, the perpetuation of inflammation, with the consequent lack of immune reso-
lution, is due to the presence of a biofilm that frustrates phagocytosis. Potentiating proin-
flammatory responses will not necessarily solve the immune cells’ battle against biofilm,
since biofilm itself, with its irremovable persistence, is the cause of the frustration [120].

The competition for oxygen and micronutrients during immune responses can alter the
local environment. Cancer cells are voracious of micronutrients and glucose [121] and, as a
result, slow the rate of glycolysis in tumor-invading lymphocyte cells [121,122]. Bacteria
exhibit similar voracity in biofilm infections. Indeed, microbial infections contend with the
host immune system for oxygen, glucose, and micronutrients [123]. Due to the increased
oxygen consumption by bacterial and immunological cells during S. aureus infection, a
regional hypoxia might result [123].
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Arginase and indolamine-2, 3-dioxygenase are two enzymes released by various cells
in the inflammatory sites to consume micronutrients in the peripheral niches [124].

A gradient of oxygen concentration is one of the most frequent conditions of biofilm
in oxic situations. Respiring bacterial cells use oxygen at the surface layers of the biofilm,
causing an oxygen limitation condition that alters the bacterial metabolism and creates
anaerobic conditions inside the lower layers of EPS [125].

Hypoxia was detected, for instance, in non-healing wounds infected with obligate
anaerobic microbes such as Clostridia and Bacteroides, which are typically isolated from
chronic wounds [126,127]. In this sense, those bacteria that require extremely low oxygen
levels for their growth can create anoxic niches in the afflicted areas.

Oxygen concentration is essential for both neutrophil activity and microbial persistence
in biofilm infections. Wu et al. analyzed the role of local oxygen content in the genesis of
bacterial biofilm infection. Both bacteria and host cells absorb oxygen, regulate oxygen
transport, and react actively to oxygen, this resulting in interactions and competitions [123].
Wu et al. found that in the proximity of a biofilm infection, the co-consumption of oxygen by
both host neutrophils and biofilm-embedded bacteria promotes the development of hypoxic
conditions. The generation of reactive oxygen species (ROS) requires adequate oxygen
levels. If the hypoxic conditions persist, the ability of neutrophils to create ROS (such
as hypochlorous acid and hydrogen peroxide) consistently decreases with a consequent
reduction in the neutrophil-killing ability [123]. Moreover, the finding that hypoxia can
readily establish in the interior of the biofilm is also biologically relevant, because this
change will alter microbial metabolism and persistence.

8. Metabolomics of Biofilm as Diagnostic and Therapeutic Target

Because of their poor ability to predict infection in the presence of confounding pro-
cesses (such as noninfectious inflammation), to predict disease outcomes, and to guide and
evaluate treatment regimens, the available biofilm infection biomarkers appear inadequate.
For this reason, it is crucial to search for novel and efficient clinical biofilm biomarkers.

Metabolomics enable the comprehensive analysis of small molecules, known as
metabolites, which are the end products of cellular processes and reflect the metabolic
status and interactions within biofilm communities [128]. Integrating metabolomics with
other omics technologies and biofilm research could pave the way for more effective solu-
tions in the field of biofilm science [129]. However, the metabolomic profiling of biofilms is
not without challenges. Biofilms exhibit heterogeneity in terms of metabolic activities and
composition, which can lead to variations in metabolite profiles within the same biofilm
community [130,131].

The metabolic responses of bacteria in biofilms are different from those of their plank-
tonic counterparts, according to several works. The presence of distinct glycolytic enzymes
between biofilms and planktonic bacteria highlights notable differences in their metabolic
processes. Noticeably, the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
shows significantly higher expression in biofilm forming-strains [130].

Moreover, S. aureus biofilm formation relies on tricarboxylic acid (TCA) intermediates,
while S. epidermidis biofilms thrive in nutrient-rich environments, when TCA activity is
suppressed [132].

A prominent finding is that, in S. aureus, the enzyme Glucose 6-Phosphatase (G6P)
leads, through a phosphorylation (that of the histidine-containing protein) and subsequent
concatenated biochemical steps, to the activation of CcpA. CcpA (coding for the catabolite
control protein A) regulates the transcription of the operon icaADBC, thus favoring the
accumulation of PIA [133].

By regulating the physical contact between bacterial cells and their immediate sur-
roundings, matrix formation not only configures the biofilm structure but also results in
metabolic diversity. This permits the metabolic cross feeding that favors the emergence
of metabolically distinct subpopulations inside a biofilm and transforms the latter into a
metabolically diverse community [134]. Signals that promote metabolic differentiation are
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affected by interspecies interactions and biofilm structure, which in turn shape a biofilm’s
nutritional and chemical gradient [135]. When one species’ metabolic by-products are uti-
lized as nutrients by another species in a biofilm, interspecies interactions foster metabolic
cooperation [134]. The oral biofilm generated by Streptococcus oralis and Veillonella spp. is
an example of the former using the latter’s lactic acid as a carbon source [136].

The regulation of multiple bacterial phenotypes depends on various cyclic dinu-
cleotides (c-di-NMPs) that represent an intracellular signaling second-messenger system.
An increase in cyclic diguanylate monophosphate (c-di-GMP), the first cyclic dinucleotide
identified in 1987 [137], is linked to biofilm development in many bacterial species [138].
With more than 100 c-di-GMP-metabolizing proteins in some species, the c-di-GMP is
also the most complex second messenger signaling system discovered in bacteria. This
signaling network is especially prominent in the human pathogens P. aeruginosa, Salmonella
typhimurium, E. coli, and Vibrio cholerae, but is also in the Gram-positive Clostridium and
Mycobacterium species [139]. c-di-GMP controls biofilm development by facilitating cell
adhesion to surfaces via a signaling cascade, thereby playing a central role in the switch-
ing between the sessile and planktonic modes of bacterial growth [139]. c-di-GMP has a
role in the persistence of P. aeruginosa biofilms, which are often found in lung infections,
since it controls the formation of exopolysaccharide alginate, a significant component of
the P. aeruginosa biofilm matrix. The rough small colony variations (SCV) of P. aeruginosa
have an enhanced amount of c-di-GMP and demonstrate greater resistance to antimicro-
bials [139,140].

Second messenger cyclic adenosine monophosphate (c-di-AMP), rather than c-di-GMP,
is produced by S. aureus, and this results in the production of components, presumably
adhesins, needed for biofilm formation [141].

A great amount of in vitro evidence has shown that high levels of cyclic dinucleotides
govern the initiation of biofilm development by bacteria [142].

Figure 3 reports a simplified example in which biofilm and c-di-NMPs are involved.
Persister cells are particularly abundant in biofilms. The mechanism of their dormancy

is not fully understood but may be due to the expression of toxin–antitoxin systems, which,
interestingly, affect the c-di-GMP network and are involved in the regulation of biofilm
formation [139].

To guide and monitor antimicrobial treatment, as well as to realize biomarkers for
biofilm infections, metabolomics is a promising approach, although the context is of great
complexity. Biomarkers could be useful to predict infection, causative agents, disease
severity, and outcome, and to distinguish infection among confounding clinical outcomes,
such as non-infectious inflammatory processes.

Regarding the potential of metabolomics as a basis for anti-infective therapeutic
strategies, several studies have put forward proposals.
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Figure 3. An example of the relationship between immune defenses and bacterial biofilm is sum-
marized, in which c-di-NMPs are involved. Biofilms produce c-di-NMPs. c-di-NMPs stimulate the
synthesis of biofilm matrix components. Host cells sense c-di-NMPs as PAMPs. As a result, an im-
mune response is generated to eliminate pathogens. But, the biofilm matrix protects biofilm bacteria as
a shield against phagocytosis and antibody deposition by plasma cells. Furthermore, biofilm induces
the reprogramming of macrophages towards an M2 phenotype, characterized by poor microbicidal
activity, and the recruitment of myeloid-derived suppressor cells (MDSCs) [142]. MDSCs produce
the immunosuppressive molecule interleukin-10 (IL-10), which attenuates the immune response and
contributes to biofilm persistence. Some bacteria within biofilms can be phagocytosed by immune
cells but resist ROS and AMPs (such as defensins 3 and LL-37) thanks to the polysaccharides of
their matrix [27,143–145]. They can survive intracellularly, thus contributing to the chronic nature of
biofilm-associated infections. Abbreviations: c-di-NMPs, cyclic dinucleotides (intracellular signaling
second-messenger systems); MØ, macrophages; IFN-γ, interferon-γ; NK, natural killer cells; PAMPs,
pathogen-associated molecular patterns; T cells, T lymphocytes; B cells, B lymphocytes/plasma cells
(plasma cells derive from B lymphocytes after encountering the antigen); Ab, antibodies; PMNs,
polymorphonuclear neutrophils; AMPs, antimicrobial peptides; ROS, reactive oxygen species.

Kim et al. studied the effects of the pentose phosphate pathway on the metabolism of S.
aureus, showing that pentose phosphate pathway mutation significantly impacts ATP levels.
Other metabolomics studies have shown that pentose phosphate pathway mutation leads
to decreased pyrimidine metabolism, including decreases in ribose-5P, UMP, and GMP.
These nucleotide reductions impact the amount of extracellular DNA in biofilms and are
associated with reduced both biofilm formation and resistance to oxidative damage [146].

A study by Mao et al. focused on the cell-free supernatant of lactic acid bacteria on
S. aureus biofilm and its metabolites. The treatment considerably slowed S. aureus growth
and prevented it from forming a biofilm. Important metabolic pathways such amino
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acids and carbohydrates metabolism were among the most noticeably altered metabolic
pathways [147].

Recently, attention has been paid to itaconic acid, a metabolite generated by the TCA
cycle in eukaryotic immune cells, and its synthetic derivative dimethyl itaconate.

This is, counterintuitively, the same metabolite that bacterial-mediated upregulation
has been shown to be responsible for switching off the defensive activity of immune cells
(see the previous paragraph). As we have previously stated, the interpretation of the
different faces of the immune response cannot be black or white: it has many nuances,
which makes us consider how much research and how much caution should be spent in
designing new treatments that involve the immune system.

The results of some very recent studies follow.
Xie et al. in their new experimental study focused on itaconic acid and dimethyl

itaconate, showing for the natural metabolite and its derivative an antibacterial and an-
tibiofilm activity through the TCA cycle in a carbon-enriched environment.

It has been emphasized that itaconate plays a critical role in linking immune and
metabolic functions to influencing host defense [148].

Hooftman et al. emphasized that certain metabolites can have double lives as im-
munomodulators. They suggested that itaconate is a valid example of this concept, having
multiple anti-inflammatory effects in macrophages [149].

The study by Zhu et al. investigated the mechanism by which itaconic acid functions
as an antibacterial metabolite in macrophages. Their experimental results showed that
itaconic acid significantly promoted the pentose phosphate pathway, which subsequently
led to significantly higher NADPH oxidase activity and more reactive oxygen species
production [150].

Kim et al. report host-directed therapeutic effects against mycobacterial infections.
In their study, itaconate significantly suppressed the production of interleukin-6 and 10,
whereas it enhanced phagosome maturation [151].

Riquelme et al. demonstrated that P. aeruginosa utilizes host-derived itaconate to redi-
rect its metabolism to promote biofilm formation [152]. They showed that P. aeruginosa can
exploit the host immune response to maintain infection. They found that P. aeruginosa alters
its metabolic and immunostimulatory properties in response to itaconate. Itaconate induces
bacterial membrane stress, resulting in the downregulation of lipopolysaccharides and
the upregulation of exopolysaccharides. This itaconate-adapted P. aeruginosa accumulates
mutations that favor biofilm formation. Exopolysaccharides, in turn, induce itaconate
production via myeloid cells, thus traducing the host immune response to a behavior that
encourages chronic infection.

Indubitably, the bacterial metabolic adaptability (of which P. aeruginosa gives us an
example) needs to be considered when designing therapies [152].

Importantly, some intracellular pathogens have evolved to produce itaconate-degrading
enzymes, which are required for intracellular proliferation and to promote pathogenicity.
To our reassurance, Hammerer et al. presented a molecule able to re-sensitize Salmonella
enterica to itaconate [153].

9. Conclusions

Biofilm infections involve serious complications and significant economic burdens
because they are frequently refractory to antibiotic therapy. Currently, the systemic ad-
ministration of antibiotics and antibiotic-doped biomaterials are used as a prophylactic
and therapeutic measure in patients undergoing implant procedures. However, this ap-
proach has some drawbacks, such as the risk that only an inadequate concentration of
antibiotic (below the minimum inhibitory dose) reaches the site, stimulating the emergence
of bacterial dormancy and antibiotic tolerance. The study of bacterial biofilms, from their
role in orthopedic infections to their impact on immunometabolism and metabolomics,
represents a various and complex field of research that continues to produce promising
insights. However, as we explore the many facets of biofilms, questions continue to arise.
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The hope is to find innovative strategies in the management of biofilm-related infections
and to exploit the immune response to fight them. However, any strategy involving the
manipulation of immune pathways must be evaluated with care and caution in view of the
potential damage resulting from the induction of persistent inflammation in tissues.

Looking to the future, further investigations into bacterial biofilms should strengthen
the interdisciplinary approach, combining microbiology, immunology, and biochemistry to
unravel the intricate web of interactions within biofilms. The development of advanced
imaging techniques will be crucial in gaining a deeper understanding of biofilm dynamics
and host responses. This new knowledge will benefit the search for new weapons to
counteract biofilm infections and to mitigate their impact on human health.

Biotechnological advances in fields such as nanotheranostics raise real hope for new
successful strategies that combine unprecedented sensitive diagnostic probes with the
targeted delivery of powerful antibacterial and antibiofilm molecules in a single multifunc-
tional nanoparticle. In this regard, nanotheranostic platforms exhibit enormous potential
for the treatment of both oncological [154] and infectious [112] diseases. Nonetheless, there
are still many challenges to face, including very important ones posed by the safety issues
associated with the clinical use of nanomaterials.
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