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Abstract 

Background  The Naive Bayes (NB) classifier is a powerful supervised algorithm widely used in Machine Learning 
(ML). However, its effectiveness relies on a strict assumption of conditional independence, which is often violated 
in real-world scenarios. To address this limitation, various studies have explored extensions of NB that tackle the issue 
of non-conditional independence in the data. These approaches can be broadly categorized into two main catego-
ries: feature selection and structure expansion.

In this particular study, we propose a novel approach to enhancing NB by introducing a latent variable as the par-
ent of the attributes. We define this latent variable using a flexible technique called Bayesian Latent Class Analysis 
(BLCA). As a result, our final model combines the strengths of NB and BLCA, giving rise to what we refer to as NB-BLCA. 
By incorporating the latent variable, we aim to capture complex dependencies among the attributes and improve 
the overall performance of the classifier.

Methods  Both Expectation-Maximization (EM) algorithm and the Gibbs sampling approach were offered 
for parameter learning. A simulation study was conducted to evaluate the classification of the model in compari-
son with the ordinary NB model. In addition, real-world data related to 976 Gastric Cancer (GC) and 1189 Non-ulcer 
dyspepsia (NUD) patients was used to show the model’s performance in an actual application. The validity of models 
was evaluated using the 10-fold cross-validation.

Results  The presented model was superior to ordinary NB in all the simulation scenarios according to higher clas-
sification sensitivity and specificity in test data. The NB-BLCA model using Gibbs sampling accuracy was 87.77 (95% CI: 
84.87-90.29). This index was estimated at 77.22 (95% CI: 73.64-80.53) and 74.71 (95% CI: 71.02-78.15) for the NB-BLCA 
model using the EM algorithm and ordinary NB classifier, respectively.

Conclusions  When considering the modification of the NB classifier, incorporating a latent component 
into the model offers numerous advantages, particularly within medical and health-related contexts. By doing so, 
the researchers can bypass the extensive search algorithm and structure learning required in the local learning 
and structure extension approach. The inclusion of latent class variables allows for the integration of all attributes 
during model construction. Consequently, the NB-BLCA model serves as a suitable alternative to conventional NB 
classifiers when the assumption of independence is violated, especially in domains pertaining to health and medicine.
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Background
The Naive Bayes (NB) classifier is a well-established 
supervised algorithm in the field of Machine Learn-
ing (ML). Its simplicity and effectiveness in classifica-
tion tasks have made it widely adopted across various 
domains [1, 2]. However, the NB classifier is built 
upon a fundamental assumption of conditional inde-
pendence, wherein all feature pairs are considered 
mutually independent given the class variable [3]. In 
practical real-world scenarios, this assumption is fre-
quently violated, resulting in a reduction in the algo-
rithm’s performance [4].

In the context of health and medical domains, the fea-
tures employed in analysis often originate from diverse 
aspects related to the subjects under study [5]. These fea-
tures can encompass symptoms in diagnostic scenarios 
or risk factors in the context of risk assessment. Con-
sequently, the dependence among these features, even 
within a specific class, becomes inevitable. This depend-
ency violates the assumption of conditional independ-
ence and calls for alternative approaches to effectively 
model and classify the data.

The issue of non-conditional independence in data has 
been addressed by various studies, proposing extensions 
of the Naive Bayes (NB) classifier [6]. These approaches 
can be classified into two major categories. Firstly, some 
studies focused on altering the features through sub-
set selection or assigning weights to them [7–11]. These 
approaches involve a search strategy to identify the most 
relevant features that optimize the classification perfor-
mance of NB. Feature selection methods aim to identify 
critical variables based on their contribution to classifi-
cation and eliminate less influential ones [12]. Alterna-
tively, feature weighting algorithms retain all variables 
in the model while assigning them importance weights 
[13–15]. However, these algorithms heavily rely on the 
characteristics of the observed data, and their results 
can vary accordingly. Moreover, the application of these 
methods is computationally demanding, as they pose 
NP-hard (NP-hard: Denoting a computational problem 
that is at least as difficult to solve as the hardest problems 
in the class of problems known as NP, which includes a 
wide range of challenging computational tasks) problems 
requiring extensive computational resources [13].

In an alternative approach, some studies have pro-
posed expanding the structure of the Naive Bayes (NB) 
classifier to accommodate conditional independence. 

Examples of such methods include the Augmented 
Naive Bayes (ANB) [16, 17], Tree Augmented Naive 
Bayes (TAN) [18], extended Tree Augmented Naive 
Bayes (eTAN) [19], k-dependence Bayesian classi-
fier [20], and Averaged One-Dependence Estimators 
(AODE) [21]. These algorithms share a common feature 
of augmenting the relationship set by introducing addi-
tional arcs between features. However, as more rela-
tionships are added to the original NB structure, the 
computational complexity increases. Hence, the chal-
lenge lies in striking a balance between the trade-off of 
increased relationships and computational complexity. 
Consequently, the search algorithms employed in this 
context face the same issue of being NP-hard [22].

An appealing alternative approach in extending the 
structure involves incorporating a latent variable into 
the model. By introducing a latent variable, we can 
effectively capture the correlation between features and 
enforce conditional independence within the structure 
[23–25]. The utilization of latent variables holds par-
ticular relevance in health and medical applications, 
especially in cases where the underlying causal mecha-
nisms of diseases remain unknown. Additionally, latent 
variables find application in situations where the direct 
cause of a disease is not directly measurable, but cer-
tain observable variables can provide valuable insights 
into it [5]. Real medical data often involves complex 
interactions and relationships among various factors 
that influence health outcomes. The inclusion of latent 
variables provides a mechanism to capture these hid-
den factors, which may not be directly observable or 
measured [26, 27]. By incorporating latent variables 
into our models, we can account for unobserved factors 
that impact the observed features, leading to a more 
comprehensive understanding of the underlying mech-
anisms and improved predictive accuracy.

Defining a latent variable in the context of Naive 
Bayes (NB) requires careful consideration. Firstly, the 
placement of the latent variable within the structure 
determines its relationship with the features and class. 
For example, Langseth and Nielsen (2006) proposed a 
hierarchical NB model where class variables serve as 
the root, attributes act as leaf nodes, and multiple latent 
variables act as parents to the leaf nodes [28]. Calders 
and Verwer (2010) presented an NB model for dis-
crimination-free classification, incorporating a single 
latent variable as the parent of the class variable [29]. 
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Similarly, Alizadeh et  al. (2021) introduced a multi-
independent latent component extension of NB, featur-
ing a latent variable as the parent of attributes and also 
linked to the class variable [23].

Additionally, defining the latent variable(s) requires 
careful consideration. The latent variable should encap-
sulate all relevant information from the attributes while 
assisting the NB structure in maintaining the assumption 
of conditional independence. Striking a balance between 
capturing the dependencies in the data and preserving 
the conditional independence assumption is essential in 
defining the latent variable(s).

This study introduces a novel approach by incorporat-
ing a latent variable as the parent of attributes, similar 
to the model proposed by Calders and Verwer. However, 
our proposed model offers reduced complexity compared 
to the previous approach. The latent variable is defined 
using Bayesian Latent Class Analysis (BLCA), providing 
flexibility in modeling. As a result, our final model com-
bines elements of both Naive Bayes (NB) and BLCA, and 
we refer to it as NB-BLCA. To learn the model’s param-
eters, we provide two options: the Expectation-Maximi-
zation (EM) algorithm and the Gibbs sampling approach. 
A comprehensive simulation study is conducted to assess 
the classification performance of the proposed model. 
Furthermore, we apply the model to real-world data, 
specifically in classifying patients as either GC or NUD 
based on their attributes. By employing the NB-BLCA 
model, we aim to enhance classification accuracy while 
effectively capturing latent dependencies within the data, 
contributing to improved decision-making in healthcare 
settings.

Material and methods
Naïve Bayesian classifier
Suppose in a classification problem, the levels of target 
variable C indicate the different classes. For instance, 
C could be the disease status indicator. In this exam-
ple, the C levels indicate the disease’s presence or 
absence. Another example could be a physician’s diag-
nosed stages of GC patients. In such examples, we are 
interested in exploring the prediction power of a set of 
attributes (X1, . . . ,Xm) for accurately detecting C levels. 
In an NB classifier framework, we assume the attributes 
(X1, . . . ,Xm) are conditionally independent given the 
information about class variable C . Therefore, we aim 
to find the level c of the class variable C which maxi-
mizes the posterior probability of this variable given the 
observed values of attributes:

(1)arg max
c∈C

P(C|x1, . . . , xm)

Using the Bayes rule for this posterior probability, we 
have:

As we mentioned before, the primary assumption of 
NB is conditional independency between attributes given 
the class variable. Therefore equation (2) could be rewrit-
ten as:

In equation (3), the denominator is constant for all 
the possible values of class variable C . Hence we could 
eliminate it and find the best class according to the below 
formula:

Therefore we allocate the subjects to the class variable 
levels, which are maximized according to their attributes.

Bayesian latent class analysis
BLCA is a model-based clustering that finds explicitly 
unobserved homogenous subgroups among the total 
population and uses the Bayesian paradigm in this man-
ner [30, 31]. This study introduces a version of Bayesian 
Latent Class Analysis (BLCA) specifically tailored for 
binary attributes while accommodating a multinomial 
distributed class variable. While it is possible to general-
ize the method for multinomial attributes or predictors, 
it requires the use of binary indicator variables, which is 
a common practice in various statistical applications such 
as regression. By employing this approach, for a depend-
ent factor variable with q levels, one can include q-1 
binary indicators, with each indicator representing a spe-
cific level of the original dependent variable by taking the 
value 1 and 0 for the other levels. The elimination of the 
last level is necessary to avoid redundancy. However, it is 
important to note that the binary version of BLCA often 
suffices for many health and medical applications.

Suppose we express the attributes by an M-dimen-
sional vector-valued X = (X1, . . . ,XN ) , where these 
come from G sub-populations. The sub-populations are 
typically referred to as classes or components. Therefore, 
we have two sets of parameters. A G-dimensional vector 
τ = (τ1, . . . , τG) , including parameters for prior belief in 
the proportions of each class. In addition, a matrix θ with 
dimension G ×M for item probability of all classes. In 
this way, all elements τ are equal or greater than 0 and 

(2)P(C|x1, . . . , xm) =
P(C)P(x1, . . . , xm|C)

P(x1, . . . , xm)

(3)

P(C|x1, . . . , xm) =
m
i=1 P(xi|C)P(C)

c
m
i=1 P(xi|C = c)P(C = c)

(4)arg max
c∈C

P(C)

m
∏

i=1

P(xi|C)
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∑G
g=1 τg = 1 and θgm is the probability of Xim = 1 given 

the information about membership of group g for any 
i ∈ 1, . . . ,N  of individuals in the study. Hence, we have 
P
(

Xim|θgm
)

= θ
Xim
gm (1− θgm)

1−Xim for Xim ∈ [0, 1] , according to 
the definition of Bernoulli distribution.

If we make a naïve Bayes assumption of conditional 
independence of observations given the group member-
ship, we can express the P

(

X i|θ g
)

=
∏M

m=1P(Xim|θgm) 
and the distribution of all X i s are:

The actual values for parameters θ and τ are unknown, 
and we suppose prior information about them. There-
fore, the direct calculation of equation 5 is not feasible. In 
application, we introduce a set Z = (Z1, . . . ,ZN ) where 
each Zi = (Zi1, . . . ,ZiG) is a vector representing the 
actual class membership of X i . In this manner, Zig = 1 
if individual i belongs to subgroup g and 0 for other-
wise. The new task is to find the best values for Z, which 
maximize the posterior probability of class membership, 
including the Z parameters.

The complete density of observed variables X i and 
missing values Zi is:

Using the Bayes theorem leads to the posterior prob-
ability of Zi , class membership for observation i , as:

The drawback of unknown actual values for param-
eters θ and τ still exist. An iterative approach that 
updates the prior information of these parameters in 
each step according to the observed data is proposed to 
achieve the best posterior distribution. In this regard, 
we assume conjugate prior distribution Beta(αgm,βgm) 
for binary variables θ , and Dirichlet(δ) for multinomial 
variables τ . Note that hyperparameters αgm and βgm for 
Beta prior distributions, specify the item response prob-
abilities of attributes m in class g . In the same manner, 

(5)P(X i|θ , τ ) =

G
∑

g=1

τgP(X i|θ g )

P(X i,Zi|τ , θ) =

G
∏

g=1

[τgP(X i|θ g )]
Zig

P(Zi|X i, τ , θ) =

G
∏

g=1

[
τgP(X i|θ g )

∑G
h=1 τhP(X i|θh)

]

Zig

hyperparameter δ = (δ1, . . . , δG) specify the share of each 
class from the total samples.

Supposing these prior distributions for θ and τ we have:

For each g ∈ [1, . . . ,G] and m ∈ [1, . . . ,M] . These 
assumptions lead to the joint posterior distribution τ and 
θ as:

In the following parts, we present two well-known iter-
ative approaches for parameter estimation. These are the 
EM algorithm and Gibbs sampling method.

The EM algorithm for BLCA
This algorithm follows an iterative process that contin-
ues until convergence is achieved, iteratively refining 
the results. The algorithm consists of two steps that are 
repeated in each iteration. In the first step, the algorithm 
calculates the expectation of the logarithm posterior 
probability. This step involves estimating the probabilities 
associated with each parameter based on the available 
data. In the second step, the algorithm determines the 
parameter values that maximize the expectation func-
tion obtained in the previous step. This maximization 
step involves adjusting the parameter values to optimize 
the fit of the model to the data [32]. To initiate the algo-
rithm, an initial guess of the parameter values is required 
for the first iteration. However, regardless of the initial 
values chosen, the algorithm is guaranteed to converge to 
the actual values of the parameters. The number of itera-
tions required for convergence may vary depending on 
the specific dataset and initial values chosen.

By iteratively performing these two steps, the algorithm 
refines the parameter estimates, improving the accuracy 
and performance of the model until a satisfactory level of 
convergence is achieved [33]. If we show the values of the 
parameters τ and θ in steps k by τ (t) and θ (t) , respectively 
the expected function in E-step for a BLCA is:

In the M-step, we update the parameters as follows:

P(τ |δ) ∝

G
∏

g=1

τ
δg−1
g

P(θgm|αgm,βgm) ∝ θ
αgm−1
gm (1− θgm)

βgm−1

P(τ , θ) ∝

N
∏

i=1

P(X i,Zi|τ , θ)P(θ)P(τ ) =

N
∏

i=1

G
∏

g=1

τ
Zig+δg−1
g

M
∏

m=1

θ
XimZig+αgm−1
gm (1− θgm)

(1−Xim)Zig+βgm−1

Q(θ , τ |θ (t), τ (t)) := E[log P(θ , τ |X ,Z)|X , θ(t), τ (t)]
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Here the � and T are parameter space for θ and τ , 
respectively. For all item response probability and class 
proportions, we have � = [0, 1]G×M and T = [0, 1]G 
given 

∑G
g=1 τg = 1.

It has been shown that the practical formulations for 
these steps are [34]:

E-step:

M-step:

The Gibbs sampling for BLCA
As we already mentioned, calculating the joint posterior 
distribution of parameters τ and θ and unobserved class 
membership Z is directly impossible. However, deter-
mining the class membership of samples is possible in the 
case of knowing the parameter values. Gibbs sampling 
is a Markov Chain Monte Carlo (MCMC) method that 
simplifies such issues and, instead of using the joint dis-
tribution, iteratively draws samples from the conditional 
distributions using the Markov property. These samples 
reflect the properties of the accurate joint posterior dis-
tribution [35].

The following steps are the practical approach for han-
dling a BLCA using the Gibbs sampling:

1-	 Set initial values for parameters τ and θ and randomly 
assign each observation to a class. Although this step 
plays a crucial role in determining the convergence 
speed of the algorithm, it is important to provide 
guidance on how users can specify the initial values 
effectively. In our proposed method, one approach 
for specifying initial values is to use random initiali-
zation, which allows for exploration of different parts 
of the parameter space. This can help avoid potential 
biases that may arise from using fixed initial values. 

θ
(t+1) = argmaxQ

(

θ , τ |θ (t), τ (t)
)

θ∈�

τ
(t+1) = argmaxQ

(

θ , τ |θ (t), τ (t)
)

τ∈T

Z
(t+1)
ig =

τ
(t)
g P(X i|θ

(t)
g )

∑G
h=1 τ

(t)
h P(X i|θ

(t)
h )

θ(t+1)
gm =

∑N
i=1 XimZ

(t+1)
ig + αgm − 1

∑N
i=1 Z

(t+1)
ig + αgm + βgm − 2

τ (t+1)
g =

∑N
i=1 Z

(t+1)
ig + δg − 1

N +
∑G

h=1 δh − G

Additionally, users may consider conducting sensitiv-
ity analyses by running the algorithm multiple times 
with different initializations to assess the stability of 
the results.

2-	 Considering the conjugate prior of Beta distribution, 
generate elements of θ (t) randomly from the follow-
ing distribution:

3-	 Considering the conjugate prior of Dirichlet distribu-
tion, generate elements of τ (k+1) randomly from the 
following distribution:

4-	 Consider the generated values of parameters and 
assign the individuals to classes randomly from a 
multinomial distribution according to their observed 
attributes X i which specify the posterior probabilities 
of membership in the classes:

5-	 Repeat steps 2 to 4 until making sure about conver-
gence.

After running the Gibbs sampling, like all other MCMC 
methods, it is essential to check if the chain converged 
using the statistical criteria and trace plots. In addition, 
burn-in and thinning are necessary [36].

NB‑BLCA
In this study, we present an extension of the NB classi-
fier that uses BLCA to impose conditional independence 
assumptions on the structure of the model. NB and BLCA 
assume the Naïve assumption of conditional independ-
ence assumption given the information of class variable. 
In contrast to NB, which only requires this assumption 
for efficient classification, The BLCA model estimates the 
parameter values considering this purpose. The presen-
tation of the NB classifier and our proposed model are 
depicted in Fig. 1, parts A and B, respectively. In this fig-
ure, the latent class of BLCA is shown by Li[i = 1, . . . ,K ] 
to differentiate from classes of the primary outcome C . 
Remember that latent class L is unobserved, but the class 
variable C is observable.

In the NB-BLCA model, the only child node of class 
variable C is the latent class variables Li . Therefore the 
posterior density in equation 3 could be reformed to:

θ(t)gm ∼ Beta(

N
∑

i=1

XimZ
(t−1)
ig + αgm ,

N
∑

i=1

Z
(t−1)
ig (1− Xim)+ βgm)

τ
(t) ∼ Dirichlet(

N
∑

i=1

Z
(t−1)
i1 + δ1, . . . ,

N
∑

i=1

Z
(t−1)
iG + δG)

Z
(t)
i ∼ Multinomial(1,

τ
(t)
1

P
(

X i |θ
(t)
1

)

∑G
h=1

τ
(t)
h P

(

X i |θ
(t)
h

) , . . . ,
τ
(t)
G P(X i |θ

(t)
G )

∑G
h=1

τ
(t)
h P(X i |θ

(t)
h )

)



Page 6 of 15Gohari et al. BMC Medical Research Methodology          (2023) 23:190 

As the latent class variables Li come from a mixture 
distribution with parameters (τ , θ ,Z ), the calculation 
of this posterior probability is not straightforward. 
However, the generalized forms of the EM algorithm 
and Gibbs sampling in the previous sections enable 
us to predict class membership C due to information 
about the latent class assignment Li concluded from the 
observed attributes.

Adjusting EM algorithm for NB‑BLCA
In order to explain the EM algorithm for an NB-BLCA, 
we should define the following parameters:

The parameter q(c) is the probability of seeing the 
level c of the class variable. Hence, it is subject to con-
straints q(c) ≥ 0 and 

∑

q(c) = 1 for all the possible lev-
els of this variable.

The parameter qi(l|c) for any i = 1, . . . ,K  is the prob-
ability of latent class i taking value l  , conditioned on 
the class c . This parameter is subject to constraints 
qi(l|c) ≥ 0 and 

∑

qi(l|c) = 1 for all levels of class and 
latent class variables.

The practical formulations of the EM algorithm are 
presented in Fig. 2. The algorithm estimates latent class 
variables membership using the attributes and then 
estimate the posterior probability of class membership 
of the target variable.

Adjusting Gibbs sampling for NB‑BLCA
The Gibbs sampler simplifies a complex joint posterior 
distribution into a set of steps, including generating sam-
ples from the conditional distributions. We explained 
how to generate latent class membership samples for a 
BLCA problem in 5 steps. The added task of generating 

P(C|L) =

∏k
i=1P(Li|C)P(C)

∑

c

∏k
i=1 P(Li|C = c)P(C = c)

samples for the NB part of NB-BLCA is quickly done by 
adding an extra step. The sample generation could be 
done from a multinomial (if the class variable has more 
than two categories) or binomial distribution (the class 
variable only includes two levels). The practical formula-
tions of the Gibbs sampler are presented in Fig. 3.

Simulation study
We conducted a simulation study to evaluate the 
predictive performance of our model compared to 
a simple NB model. Furthermore, we included two 
alternative approaches that have been suggested to 
improve the correct classification of NB when the 
conditional assumption is violated. These approaches 
are Averaged one-dependence estimators (AODE), 
proposed by Webb et  al. [21], and Hill-climbing tree 
augmented naive Bayes (TAN-HC), proposed by 
Keogh and Pazzani [37].

To generate the datasets, we utilized the Iterative 
Proportional Fitting Procedure (IPFP), originally pro-
posed by Deming and Stephan in 1940 as an algorithm 
aimed at minimizing the Pearson chi-squared statistic 
[38]. The details of this method, as described by Suesse 
et al. [39], can be found in the ’mipfp’ R package devel-
oped by Barthélemy and Suesse [40]. Using this method 
we were able to simulate multivariate Bernoulli distri-
butions assuming the Hypothetical Marginal Probabili-
ties (HMP) of each variable and a matrix that includes 
the Odds Ratio (OR) of all pairs of variables.

The elements of the HMP vector were randomly gen-
erated from a uniform distribution between 0 and 1 
( HMPi ∼ U(0, 1) ) for each iteration. Similarly, the ele-
ments of the paired OR matrix were randomly gener-
ated from a uniform distribution within the range of 
0.25 and 4 ( ORij ∼ U(0.25, 4)fori �= j ). To reduce com-
putational complexity, we generated the feature vari-
ables in batches of 5 dimensions. Consequently, for 
scenarios involving only 5 features, we generated a 

Fig. 1  The Naïve Bayesian classifier (A) and proposed model network (B) structures
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single batch. For scenarios with 10 features, we gener-
ated 2 batches, and so on.

The response class variable Z was generated using a 
logistic regression approach. We assumed a regression 
coefficient of 2 ( β = 2 ) for all feature variables and 
applied the inverse logit transformation to their linear 
combination to calculate the probability of belonging 
to class 1. Additionally, a random error term from a 
Gaussian distribution with mean parameter 0 and 
standard deviation parameter 4 was added to this 
linear combination. The intercept coefficient ( α ) of 
the logistic regression served as a tuning parameter 
for specifying the marginal probability of the class 
variable.

Finally, the values of the response variable were 
generated from a Binomial distribution, taking into 
account the calculated probabilities.

We assumed marginal probabilities of 0.3, 0.5, and 
0.7 for the class variable to explore their effect on the 

Z = α + β

p
∑

i=1

Xi + N (0, σ = 4)

P =
1

1+ eZ

Y ∼ Binomial(P)

Fig. 2  The EM Algorithm for the NB-BLCA model
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model’s performance. To assess the impact of sample 
size on the model’s performance, we considered sam-
ples consisting of 500, 1000, and 2000 subjects. Fur-
thermore, we generated scenarios with 5, 10, and 20 
feature variables.

For all algorithms, we used 70% of the randomly 
selected data as a training dataset, while the remaining 
30% was used to evaluate algorithm performance. The 
validity of the algorithms was measured by calculating 
the mean values of sensitivity (recall), specificity, posi-
tive predictive value (precision), negative predictive 
value, and precision across 1000 replicates."

Real‑world data application
In this section, we used multicenter hospital-based 
data to demonstrate the application of the model in a 

real-world example. This data was related to 976 GC 
and 1189 NUD patients referred to the national can-
cer institute of Iran (NCII) from July 2003 to Jan 2020. 
Trained technicians interviewed each participant at the 
time of recruitment using a structured questionnaire 
after accepting enrolment in the study. The questionnaire 
includes 64 attributes in the five subdomains, demo-
graphic variables, dietary habits, self-reported medical 
status, narcotics use, and SES indicators. All the pre-
dictors were recoded into binary variables, and the list, 
including their names and levels, is available in Supple-
mentary Table 1.

We fitted the NB classifier, NB-BLCA using the EM 
algorithm, and NB-BLCA using Gibbs sampler to data. 
A random sample with a proportion of 70% sample size 
was selected to train the models. The model’s validity and 

Fig. 3  The Gibbs sampler Algorithm for the NB-BLCA model
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prediction ability were explored using the other 30% of 
subjects. The identical measurements in the simulation 
section were calculated and reported.

Results
In the simulation study, we compared the sensitivity, 
specificity, positive predictive value, negative predic-
tive value, and precision of the ordinary Naive Bayes 
(NB) classifier, NB-BLCA, and other alternative models. 
Tables 1, 2 and 3 present these performance metrics for 

different scenarios, considering varying marginal prob-
abilities of the class variables (0.3, 0.5, and 0.7) and differ-
ent numbers of predictors.

When the marginal probability of the class variable is 
set to 0.3 and the number of predictors is low (5 attrib-
utes), the sensitivity of all models is relatively lower, 
failing to exceed 50%. However, as the sample size 
increases, the sensitivity improves. Even in the scenario 
with the highest sample size of 2000, the sensitivity 
remains below 50%. This indicates that all algorithms 

Table 1  Comparison of Naive Bayes classifier and alternative approach: marginal probability of class variable = 0.3

Model Number of 
predictors

Sample size Sensitivity Specificity Positive 
predictive value

Negative 
predictive value

Precision

NB 5 500 39.21 86.81 58.13 76.05 58.13

AODE 5 500 36.78 88.82 60.64 75.71 60.64

TAN 5 500 38.17 87.81 59.31 75.93 59.31

NB-BLCA (EM) 5 500 35.46 90.69 64.13 75.69 64.13

NB 5 1000 38.98 86.7 57.76 75.96 57.76

AODE 5 1000 35.8 88.76 59.8 75.43 59.8

TAN 5 1000 37.61 87.61 58.56 75.73 58.56

NB-BLCA (EM) 5 1000 33.25 90.74 62.45 75.06 62.45

NB 5 2000 38.75 86.64 57.56 75.86 57.56

AODE 5 2000 35.71 88.51 59.23 75.32 59.23

TAN 5 2000 37.36 87.49 58.24 75.61 58.24

NB-BLCA (EM) 5 2000 31.74 90.81 61.35 74.6 61.35

NB 10 500 49.48 87.13 63.48 79.37 63.48

AODE 10 500 49.86 88.27 65.81 79.7 65.81

TAN 10 500 49.92 87.69 64.73 79.61 64.73

NB-BLCA (EM) 10 500 66.38 92.52 80.08 86.04 80.08

NB 10 1000 48.47 87.26 63.19 79.06 63.19

AODE 10 1000 48.34 88.1 64.71 79.18 64.71

TAN 10 1000 48.51 87.51 63.66 79.12 63.66

NB-BLCA (EM) 10 1000 59.43 91.62 76.19 83.46 76.19

NB 10 2000 48.49 87.1 62.94 79 62.94

AODE 10 2000 48.12 87.74 63.97 79.01 63.97

TAN 10 2000 48.41 87.2 63.08 79 63.08

NB-BLCA (EM) 10 2000 54.27 90.92 72.96 81.58 72.96

NB 20 500 59.13 89.33 71.18 83.12 71.18

AODE 20 500 62.15 90.31 74.12 84.32 74.12

TAN 20 500 60.33 89.8 72.52 83.61 72.52

NB-BLCA (EM) 20 500 98.73 99.69 99.31 99.43 99.31

NB 20 1000 57.66 89.26 70.54 82.57 70.54

AODE 20 1000 59.26 89.82 72.21 83.2 72.21

TAN 20 1000 57.91 89.4 70.91 82.67 70.91

NB-BLCA (EM) 20 1000 97.63 99.33 98.48 98.95 98.48

NB 20 2000 57.29 89.12 70.04 82.47 70.04

AODE 20 2000 58.14 89.44 70.96 82.81 70.96

TAN 20 2000 57.31 89.13 70.07 82.48 70.07

NB-BLCA (EM) 20 2000 95.86 98.8 97.24 98.18 97.24
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are sensitive to the lower rate of events in the data. It is 
worth noting that both increasing the number of pre-
dictors and the marginal probability of the class vari-
ables enhance the sensitivity of the models.

In all scenarios, except for the marginal probability 
of the class variable 0.7 when the number of predictors 
is 5, the precision of our proposed model (NB-BLCA) 
is higher compared to the other approaches. This 
indicates that our model performs better in terms of 

correctly identifying positive instances among the pre-
dicted ones.

When the marginal probability of the class variable is 
low (0.3) and the number of predictors is less than 20, the 
superiority of our model is based on higher specificity. 
Increasing the number of predictors also leads to a greater 
increase in the sensitivity of our model compared to the 
other approaches. This trend is observed consistently 
across the different scenarios (as shown in Tables 2 and 3).

Table 2  Comparison of Naive Bayes classifier and alternative approach: marginal probability of class variable = 0.5

Model Number of 
predictors

Sample size Sensitivity Specificity Positive 
predictive value

Negative 
predictive value

Precision

NB 5 500 64.5 67.25 66.69 65.72 66.69

AODE 5 500 65.28 67.51 67.16 66.33 67.16

TAN 5 500 64.96 67.43 66.97 66.08 66.97

NB-BLCA (EM) 5 500 65.75 68.97 68.32 67.07 68.32

NB 5 1000 64.36 67.06 66.39 65.71 66.39

AODE 5 1000 64.73 67.24 66.69 66.02 66.69

TAN 5 1000 64.63 67.07 66.51 65.87 66.51

NB-BLCA (EM) 5 1000 64.93 68.12 67.25 66.33 67.25

NB 5 2000 64.39 66.82 66.34 65.59 66.34

AODE 5 2000 64.43 67.1 66.57 65.73 66.57

TAN 5 2000 64.34 66.96 66.42 65.61 66.42

NB-BLCA (EM) 5 2000 64.39 67.69 66.77 65.75 66.77

NB 10 500 70.26 71.57 71.31 70.67 71.31

AODE 10 500 71.08 72.65 72.33 71.57 72.33

TAN 10 500 70.81 72.26 71.97 71.24 71.97

NB-BLCA (EM) 10 500 79.43 82.61 82.16 80.19 82.16

NB 10 1000 70.08 71.25 71 70.45 71

AODE 10 1000 70.58 71.84 71.57 70.98 71.57

TAN 10 1000 70.28 71.41 71.17 70.64 71.17

NB-BLCA (EM) 10 1000 76.36 79.27 78.75 77.12 78.75

NB 10 2000 69.95 70.95 70.67 70.34 70.67

AODE 10 2000 70.26 71.26 71 70.66 71

TAN 10 2000 69.98 71.01 70.73 70.38 70.73

NB-BLCA (EM) 10 2000 73.8 76.62 75.96 74.64 75.96

NB 20 500 75.97 76.79 76.62 76.22 76.62

AODE 20 500 77.43 78.88 78.6 77.82 78.6

TAN 20 500 76.77 77.59 77.43 77.02 77.43

NB-BLCA (EM) 20 500 99.01 99.36 99.36 99.01 99.36

NB 20 1000 75.43 76.19 76.03 75.63 76.03

AODE 20 1000 76.24 77.34 77.11 76.51 77.11

TAN 20 1000 75.7 76.42 76.27 75.89 76.27

NB-BLCA (EM) 20 1000 98.13 98.62 98.61 98.15 98.61

NB 20 2000 75.39 75.99 75.89 75.52 75.89

AODE 20 2000 75.83 76.64 76.49 76 76.49

TAN 20 2000 75.41 76.02 75.92 75.54 75.92

NB-BLCA (EM) 20 2000 96.92 97.58 97.56 96.94 97.56
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Similar to many classification algorithms, the perfor-
mance of NB, AODE, TAN, and our proposed model is 
influenced by the prevalence of the outcome, with a lower 
rate of events having a significant impact on the sensitiv-
ity of these models.

Overall, the results demonstrate that the performance 
of the models is affected by the marginal probability of 
the class variable, the number of predictors, and the prev-
alence of the outcome. Our proposed model (NB-BLCA) 
shows favorable precision and specificity, particularly in 

scenarios with low marginal probability and a smaller 
number of predictors.

These findings highlight the importance of considering 
these factors when applying classification algorithms and 
emphasize the potential benefits of our proposed model 
in handling such scenarios.

In Table  4, we present the results of comparing the 
models’ predictions for real world data (classification of 
patients into GC or NUD groups). All models showed a 
significant improvement in prediction accuracy (P-value 

Table 3  Comparison of Naive Bayes classifier and alternative approach: marginal probability of class variable = 0.7

Model Number of 
predictors

Sample size Sensitivity Specificity Positive 
predictive value

Negative 
predictive value

Precision

NB 5 500 85.99 38.59 75.81 56.38 75.81

AODE 5 500 88.17 35.32 75.27 58.62 75.27

TAN 5 500 87.08 37.15 75.6 57.46 75.6

NB-BLCA (EM) 5 500 89.84 33.82 75.17 60.56 75.17

NB 5 1000 85.99 38.65 75.8 56.26 75.8

AODE 5 1000 88.21 34.98 75.16 58.03 75.16

TAN 5 1000 87.06 36.96 75.51 57.09 75.51

NB-BLCA (EM) 5 1000 90.06 32.09 74.67 59.26 74.67

NB 5 2000 85.87 38.67 75.76 56.05 75.76

AODE 5 2000 88.22 34.61 75.04 57.96 75.04

TAN 5 2000 87.02 36.75 75.43 56.9 75.43

NB-BLCA (EM) 5 2000 90.41 30.56 74.27 58.84 74.27

NB 10 500 86.26 50.37 79.44 62.46 79.44

AODE 10 500 87.23 50.59 79.69 64.24 79.69

TAN 10 500 86.77 50.72 79.65 63.5 79.65

NB-BLCA (EM) 10 500 90.28 66.73 85.82 75.7 85.82

NB 10 1000 86.5 49.01 79.13 62.06 79.13

AODE 10 1000 87.23 48.7 79.16 63.2 79.16

TAN 10 1000 86.71 49.01 79.17 62.41 79.17

NB-BLCA (EM) 10 1000 89.47 59.65 83.24 71.79 83.24

NB 10 2000 86.39 48.7 78.99 61.76 78.99

AODE 10 2000 87.09 48.07 78.92 62.68 78.92

TAN 10 2000 86.56 48.51 78.96 61.96 78.96

NB-BLCA (EM) 10 2000 89.05 54.23 81.29 68.98 81.29

NB 20 500 88.79 59.25 83.13 70.11 83.13

AODE 20 500 89.44 62.7 84.44 72.5 84.44

TAN 20 500 89.25 60.34 83.58 71.37 83.58

NB-BLCA (EM) 20 500 99.4 98.97 99.54 98.67 99.54

NB 20 1000 88.62 57.86 82.58 69.35 82.58

AODE 20 1000 88.95 59.71 83.27 70.62 83.27

TAN 20 1000 88.74 58.05 82.66 69.64 82.66

NB-BLCA (EM) 20 1000 98.76 97.65 98.95 97.24 98.95

NB 20 2000 88.65 57.45 82.45 69.21 82.45

AODE 20 2000 88.82 58.48 82.83 69.91 82.83

TAN 20 2000 88.66 57.45 82.45 69.23 82.45

NB-BLCA (EM) 20 2000 97.94 95.63 98.06 95.38 98.06
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< 0.001). Among the models, the NB-BLCA model uti-
lizing the Gibbs sampler achieved the highest accuracy 
of 87.77 (84.87-90.29), according to the 95% confidence 
interval. Notably, this confidence interval did not overlap 
with the intervals of the other two models, indicating a 
statistically significant increase in prediction accuracy.

Additionally, the Gibbs sampler-based NB-BLCA 
model demonstrated a higher Kappa value compared 
to the other approaches. This indicates that the model 
correctly classified patients with a 76% higher accuracy 
than random assignment. Furthermore, when perform-
ing McNemar’s test for the NB classifier, the result was 
not significant (p-value = 0.74), suggesting that the NB 
approach did not yield a substantial improvement.

While the NB-BLCA model had a lower specificity 
(74.87) compared to NB (77.12), it exhibited a signifi-
cantly higher sensitivity. The increased sensitivity indi-
cates a better ability to correctly identify positive cases. 
Overall, the NB-BLCA model employing the Gibbs sam-
pler outperformed the other two alternatives in terms of 
prediction accuracy and various performance metrics.

Discussion
We presented a modified version of the ordinary NB 
classifier called NB-BLCA, which can enhance the mod-
el’s prediction performance. In addition, we suggested 
two methods, Gibbs sampling, and the EM algorithm, 
for parameter estimation. Our findings, based on real-
world data examples of GC patients, demonstrate that 
the Gibbs sampler method yields significantly improved 
prediction accuracy compared to the EM algorithm. The 
application of Gibbs sampling in our study has shown 
superior performance in accurately predicting outcomes, 

indicating its effectiveness in modeling and analyzing 
the given dataset. These results underscore the value 
of incorporating Gibbs sampling as a powerful tool for 
enhancing prediction accuracy in real-world scenarios 
involving GC patients. On the other hand, the simula-
tion study revealed that NB-BLCA based on the EM algo-
rithm was superior to the ordinary NB classifier in all the 
predefined scenarios. However, we should admit that our 
model is more sophisticated than the standard NB clas-
sifier in structure. Therefore, the usual trade-off between 
complexity and accuracy matters here. However, atten-
tion to the properties of each algorithm facilitates the fit-
ting procedure and leads to more accurate results.

In the context of adjusting the naive Bayesian classi-
fier when the conditional assumptions are violated, latent 
variable models emerge as one of the optimal solutions 
[4, 41]. This assumption often fails to capture complex 
relationships and dependencies among features, leading 
to suboptimal performance. To overcome these limita-
tions, latent variable models offer a powerful framework. 
By introducing latent variables, these models can cap-
ture the hidden dependencies and relationships among 
features, even in cases where the conditional independ-
ence assumption is violated [3]. The inclusion of latent 
variables allows for more flexible and expressive mod-
eling, enabling the representation of intricate interactions 
among features [3].

One key advantage of latent variable models is their 
ability to handle missing data and incomplete feature sets 
[42]. By incorporating latent variables, these models can 
effectively impute missing values, mitigating the impact 
of incomplete information on classification accuracy. 
This is particularly valuable in real-world scenarios where 

Table 4  Comparison between predictive indices of NB-BLCA models and ordinary NB in real-world data of GC patients

Model

Index NB-BLCA
(EM algorithm)

NB-BLCA
(Gibbs sampling)

NB classifier

Accuracy (95% CI) 77.22 (73.64-80.53) 87.77 (84.87-90.29) 74.71 (71.02-78.15)

No information rate (NIR) 63.32 50.92 53.43

P-Value [Accuracy > NIR] <0.001 <0.001 <0.001

Kappa 0.53 0.76 0.49

Mcnemar’s Test P-Value <0.001 <001 0.74

Sensitivity 81.28 82.89 71.94

Specificity 74.87 92.83 77.12

Pos Pred Value 65.2 92.31 73.26

Neg Pred Value 87.35 83.95 75.93

Balanced Accuracy 78.07 87.86 74.53
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data may be incomplete or contain missing values [43]. 
Furthermore, latent variable models provide a means to 
account for unobserved or latent factors that may influ-
ence the observed features [44]. By capturing these latent 
factors, the models can better explain the underlying data 
distribution and improve classification performance.

Another benefit of latent variable models is their abil-
ity to offer principled probabilistic inference [45]. This 
allows for robust uncertainty quantification and provides 
richer insights into the model’s predictions. By under-
standing the uncertainty associated with the predictions, 
decision-makers can make more informed choices based 
on the level of confidence or uncertainty in the classifica-
tion results.

In summary, when the conditional assumptions of the 
naive Bayesian classifier are violated, latent variable mod-
els serve as an optimal solution. By incorporating latent 
variables, these models capture hidden dependencies, 
handle missing data, account for unobserved factors, 
and offer principled probabilistic inference. Their ability 
to address the limitations of the naive Bayesian classifier 
makes latent variable models a valuable tool for improv-
ing classification performance in scenarios where condi-
tional assumptions are not met.

The Gibbs sampler is one of the most efficient and well-
known MCMC algorithms. This algorithm is a special case 
of Metropolis-Hasting sampling wherein the randomly 
generated values are always accepted. It works based on 
the Markov property and generates random samples from 
the univariate conditional posterior distributions instead 
of an expensive joint distribution [35, 46]. Therefore, the 
Gibbs sampler leads to the answers more quickly and 
needs less computational complexity. However, the sam-
ples achieved from this approach still are highly correlated. 
In this situation, thinning the samples has been suggested 
to make samples independent. It means picking sepa-
rated points from the generated chain systematically [47]. 
Separating the samples from the Markov chain dilutes the 
dependency and makes them independent. Another draw-
back of MCMC methods is the impact of misspecification 
of the initial values on the convergence of the chain. Fortu-
nately, in most cases, the chain corrects itself at each scan, 
and we ensure that the later samples reflect the actual pos-
terior distribution [48]. Therefore, the only task we need 
is to burn in the initial values of the chain. Typically ref-
erences suggest a basic rule of the first 1000 to 5000 sam-
ple burn-in [49]. The other proposes a more conservative 
approach to selecting the starting value close to the distri-
bution mode achieved from a likelihood-based model [50]. 
We can use all these considerations to ensure chain con-
vergence by correctly tuning the parameters.

As we confronted here, the EM algorithm is wide-
spread in the case of the mixture distribution [51, 52]. 
However, such a method is not without drawbacks. For 
instance, there is no guarantee to achieve global optima. 
In addition, the real value near the boundary makes the 
estimations unstable. Using parametric bootstrap sam-
pling and refitting the model could benefit these situa-
tions [30]. Hence, we restarted all the processes in the 
EM algorithm ten times in the simulation study and 
real-world data example. This approach is not straight-
forward when we sample from low-probability groups. 
To overcome this problem, using likelihood sampling 
and logic sampling methods have been proposed [53]. 
Fortunately, due to appropriate prior distribution, 
Gibbs’s sampler is not a case of this issue. In this study, 
Beta and Dirichlet priors are proper and conjugate for 
parameters of interest [54].

The NB-BLCA model needs to determine the number 
of latent class variables and the number of levels for each 
of them. Data gathering in many medical and health appli-
cations starts after determining risk factors, influential 
predictors, and related domains [5]. Therefore, the spe-
cialist could supervise us in detecting the required latent 
variables. However, it is not a general rule, especially in 
data mining applications. More development seems nec-
essary in this situation. On the other hand, the number of 
levels for each latent variable depends on the data. Like 
principal component analysis (PCA) and Explanatory Fac-
tor Analysis (EFA), the best choice of levels could be made 
using the scree plot [55]. In this manner, AIC and BIC cri-
teria for both Gibbs sampling and EM algorithm and DIC 
for Gibbs sampling could lead us to select the best choice.

Conclusion
The addition of a latent component to the NB classifier 
model offers numerous advantages when compared to 
other modification attempts. Firstly, it aligns well with 
the nature of the data, particularly within medical and 
health contexts. Furthermore, incorporating the latent 
component allows us to bypass the extensive search 
algorithm and structure learning required in the local 
learning and structure extension approach. By utiliz-
ing latent class variables, all attributes are incorporated 
into the model building process, unlike attribute selec-
tion approaches that may ignore certain variables and 
result in the loss of information. As a result, the NB-
BLCA model emerges as a suitable alternative to ordi-
nary NB classifiers, particularly when the assumption 
of independence is violated, especially in the domains 
of health and medicine.
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